Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics
نویسندگان
چکیده
Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays.
منابع مشابه
An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate.
More recently, there has been a growing trend toward making electronics fl exible and even stretchable, [ 1–7 ] e.g., in the applications of neural interfaces where mechanical compliance is critical. [ 8–12 ] Many challenges hinder the implementation of electronics on an elastomeric substrate with integration density and functionality comparable to that achievable on a silicon substrate. One ma...
متن کاملHigh-density stretchable electronics: toward an integrated multilayer composite.
www.MaterialsViews.com C O M M High-Density Stretchable Electronics: Toward an Integrated Multilayer Composite U N IC By Liang Guo and Stephen P. DeWeerth * A IO N In recent years, interest has developed for implementing electronics using fl exible, foldable, and even stretchable materials; the potential applications of such technologies include consumer products ranging from fl exible/elastic ...
متن کاملFast and Efficient Fabrication of Intrinsically Stretchable Multilayer Circuit Boards by Wax Pattern Assisted Filtration
Intrinsically stretchable multilayer circuit boards are fabricated with a fast and material efficient method based on filtration. Silver nanowire conductor patterns of outstanding performance are defined by filtration through wax printed membranes and the circuit board is assembled by subsequent transfers of the nanowires onto the elastomer substrate. The method is used to fabricate a bright st...
متن کاملFabrication Approaches to Interconnect Based Devices for Stretchable Electronics: A Review
Stretchable electronics promise to naturalize the way that we are surrounded by and interact with our devices. Sensors that can stretch and bend furthermore have become increasingly relevant as the technology behind them matures rapidly from lab-based workflows to industrially applicable production principles. Regardless of the specific materials used, creating stretchable conductors involves e...
متن کاملTape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer
Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016